From 9fa6460f22be5482239d0b903af985a519f77166 Mon Sep 17 00:00:00 2001 From: Jon Bergli Heier Date: Wed, 1 Jun 2011 19:28:24 +0200 Subject: Initial commit. --- noiseutils/noiseutils.cpp | 1298 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1298 insertions(+) create mode 100644 noiseutils/noiseutils.cpp (limited to 'noiseutils/noiseutils.cpp') diff --git a/noiseutils/noiseutils.cpp b/noiseutils/noiseutils.cpp new file mode 100644 index 0000000..ddcac1b --- /dev/null +++ b/noiseutils/noiseutils.cpp @@ -0,0 +1,1298 @@ +// noiseutils.cpp +// +// Copyright (C) 2003-2005 Jason Bevins +// +// This library is free software; you can redistribute it and/or modify it +// under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation; either version 2.1 of the License, or (at +// your option) any later version. +// +// This library is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public +// License (COPYING.txt) for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with this library; if not, write to the Free Software Foundation, +// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +// +// The developer's email is jlbezigvins@gmzigail.com (for great email, take +// off every 'zig'.) +// + +#include + +#include +#include + +#include "noiseutils.h" + +using namespace noise; +using namespace noise::model; +using namespace noise::module; + +// Bitmap header size. +const int BMP_HEADER_SIZE = 54; + +// Direction of the light source, in compass degrees (0 = north, 90 = east, +// 180 = south, 270 = east) +const double DEFAULT_LIGHT_AZIMUTH = 45.0; + +// Amount of contrast between light and dark areas. +const double DEFAULT_LIGHT_CONTRAST = 1.0; + +// Elevation of the light source above the horizon, in degrees (0 = on +// horizon, 90 = directly overhead) +const double DEFAULT_LIGHT_ELEVATION = 45.0; + +////////////////////////////////////////////////////////////////////////////// +// Miscellaneous functions + +namespace noise +{ + + namespace utils + { + + // Performs linear interpolation between two 8-bit channel values. + inline noise::uint8 BlendChannel (const uint8 channel0, + const uint8 channel1, float alpha) + { + float c0 = (float)channel0 / 255.0; + float c1 = (float)channel1 / 255.0; + return (noise::uint8)(((c1 * alpha) + (c0 * (1.0f - alpha))) * 255.0f); + } + + // Performs linear interpolation between two colors and stores the result + // in out. + inline void LinearInterpColor (const Color& color0, const Color& color1, + float alpha, Color& out) + { + out.alpha = BlendChannel (color0.alpha, color1.alpha, alpha); + out.blue = BlendChannel (color0.blue , color1.blue , alpha); + out.green = BlendChannel (color0.green, color1.green, alpha); + out.red = BlendChannel (color0.red , color1.red , alpha); + } + + // Unpacks a floating-point value into four bytes. This function is + // specific to Intel machines. A portable version will come soon (I + // hope.) + inline noise::uint8* UnpackFloat (noise::uint8* bytes, float value) + { + noise::uint8* pBytes = (noise::uint8*)(&value); + bytes[0] = *pBytes++; + bytes[1] = *pBytes++; + bytes[2] = *pBytes++; + bytes[3] = *pBytes++; + return bytes; + } + + // Unpacks a 16-bit integer value into two bytes in little endian format. + inline noise::uint8* UnpackLittle16 (noise::uint8* bytes, + noise::uint16 integer) + { + bytes[0] = (noise::uint8)((integer & 0x00ff) ); + bytes[1] = (noise::uint8)((integer & 0xff00) >> 8 ); + return bytes; + } + + // Unpacks a 32-bit integer value into four bytes in little endian format. + inline noise::uint8* UnpackLittle32 (noise::uint8* bytes, + noise::uint32 integer) + { + bytes[0] = (noise::uint8)((integer & 0x000000ff) ); + bytes[1] = (noise::uint8)((integer & 0x0000ff00) >> 8 ); + bytes[2] = (noise::uint8)((integer & 0x00ff0000) >> 16); + bytes[3] = (noise::uint8)((integer & 0xff000000) >> 24); + return bytes; + } + + } + +} + +using namespace noise; + +using namespace noise::utils; + +////////////////////////////////////////////////////////////////////////////// +// GradientColor class + +GradientColor::GradientColor () +{ + m_pGradientPoints = NULL; +} + +GradientColor::~GradientColor () +{ + delete[] m_pGradientPoints; +} + +void GradientColor::AddGradientPoint (double gradientPos, + const Color& gradientColor) +{ + // Find the insertion point for the new gradient point and insert the new + // gradient point at that insertion point. The gradient point array will + // remain sorted by gradient position. + int insertionPos = FindInsertionPos (gradientPos); + InsertAtPos (insertionPos, gradientPos, gradientColor); +} + +void GradientColor::Clear () +{ + delete[] m_pGradientPoints; + m_pGradientPoints = NULL; + m_gradientPointCount = 0; +} + +int GradientColor::FindInsertionPos (double gradientPos) +{ + int insertionPos; + for (insertionPos = 0; insertionPos < m_gradientPointCount; + insertionPos++) { + if (gradientPos < m_pGradientPoints[insertionPos].pos) { + // We found the array index in which to insert the new gradient point. + // Exit now. + break; + } else if (gradientPos == m_pGradientPoints[insertionPos].pos) { + // Each gradient point is required to contain a unique gradient + // position, so throw an exception. + throw noise::ExceptionInvalidParam (); + } + } + return insertionPos; +} + +const Color& GradientColor::GetColor (double gradientPos) const +{ + assert (m_gradientPointCount >= 2); + + // Find the first element in the gradient point array that has a gradient + // position larger than the gradient position passed to this method. + int indexPos; + for (indexPos = 0; indexPos < m_gradientPointCount; indexPos++) { + if (gradientPos < m_pGradientPoints[indexPos].pos) { + break; + } + } + + // Find the two nearest gradient points so that we can perform linear + // interpolation on the color. + int index0 = ClampValue (indexPos - 1, 0, m_gradientPointCount - 1); + int index1 = ClampValue (indexPos , 0, m_gradientPointCount - 1); + + // If some gradient points are missing (which occurs if the gradient + // position passed to this method is greater than the largest gradient + // position or less than the smallest gradient position in the array), get + // the corresponding gradient color of the nearest gradient point and exit + // now. + if (index0 == index1) { + m_workingColor = m_pGradientPoints[index1].color; + return m_workingColor; + } + + // Compute the alpha value used for linear interpolation. + double input0 = m_pGradientPoints[index0].pos; + double input1 = m_pGradientPoints[index1].pos; + double alpha = (gradientPos - input0) / (input1 - input0); + + // Now perform the linear interpolation given the alpha value. + const Color& color0 = m_pGradientPoints[index0].color; + const Color& color1 = m_pGradientPoints[index1].color; + LinearInterpColor (color0, color1, (float)alpha, m_workingColor); + return m_workingColor; +} + +void GradientColor::InsertAtPos (int insertionPos, double gradientPos, + const Color& gradientColor) +{ + // Make room for the new gradient point at the specified insertion position + // within the gradient point array. The insertion position is determined by + // the gradient point's position; the gradient points must be sorted by + // gradient position within that array. + GradientPoint* newGradientPoints; + newGradientPoints = new GradientPoint[m_gradientPointCount + 1]; + for (int i = 0; i < m_gradientPointCount; i++) { + if (i < insertionPos) { + newGradientPoints[i] = m_pGradientPoints[i]; + } else { + newGradientPoints[i + 1] = m_pGradientPoints[i]; + } + } + delete[] m_pGradientPoints; + m_pGradientPoints = newGradientPoints; + ++m_gradientPointCount; + + // Now that we've made room for the new gradient point within the array, add + // the new gradient point. + m_pGradientPoints[insertionPos].pos = gradientPos ; + m_pGradientPoints[insertionPos].color = gradientColor; +} + +////////////////////////////////////////////////////////////////////////////// +// NoiseMap class + +NoiseMap::NoiseMap () +{ + InitObj (); +} + +NoiseMap::NoiseMap (int width, int height) +{ + InitObj (); + SetSize (width, height); +} + +NoiseMap::NoiseMap (const NoiseMap& rhs) +{ + InitObj (); + CopyNoiseMap (rhs); +} + +NoiseMap::~NoiseMap () +{ + delete[] m_pNoiseMap; +} + +NoiseMap& NoiseMap::operator= (const NoiseMap& rhs) +{ + CopyNoiseMap (rhs); + + return *this; +} + +void NoiseMap::Clear (float value) +{ + if (m_pNoiseMap != NULL) { + for (int y = 0; y < m_height; y++) { + float* pDest = GetSlabPtr (0, y); + for (int x = 0; x < m_width; x++) { + *pDest++ = value; + } + } + } +} + +void NoiseMap::CopyNoiseMap (const NoiseMap& source) +{ + // Resize the noise map buffer, then copy the slabs from the source noise + // map buffer to this noise map buffer. + SetSize (source.GetWidth (), source.GetHeight ()); + for (int y = 0; y < source.GetHeight (); y++) { + const float* pSource = source.GetConstSlabPtr (0, y); + float* pDest = GetSlabPtr (0, y); + memcpy (pDest, pSource, (size_t)source.GetWidth () * sizeof (float)); + } + + // Copy the border value as well. + m_borderValue = source.m_borderValue; +} + +void NoiseMap::DeleteNoiseMapAndReset () +{ + delete[] m_pNoiseMap; + InitObj (); +} + +float NoiseMap::GetValue (int x, int y) const +{ + if (m_pNoiseMap != NULL) { + if (x >= 0 && x < m_width && y >= 0 && y < m_height) { + return *(GetConstSlabPtr (x, y)); + } + } + // The coordinates specified are outside the noise map. Return the border + // value. + return m_borderValue; +} + +void NoiseMap::InitObj () +{ + m_pNoiseMap = NULL; + m_height = 0; + m_width = 0; + m_stride = 0; + m_memUsed = 0; + m_borderValue = 0.0; +} + +void NoiseMap::ReclaimMem () +{ + size_t newMemUsage = CalcMinMemUsage (m_width, m_height); + if (m_memUsed > newMemUsage) { + // There is wasted memory. Create the smallest buffer that can fit the + // data and copy the data to it. + float* pNewNoiseMap = NULL; + try { + pNewNoiseMap = new float[newMemUsage]; + } + catch (...) { + throw noise::ExceptionOutOfMemory (); + } + memcpy (pNewNoiseMap, m_pNoiseMap, newMemUsage * sizeof (float)); + delete[] m_pNoiseMap; + m_pNoiseMap = pNewNoiseMap; + m_memUsed = newMemUsage; + } +} + +void NoiseMap::SetSize (int width, int height) +{ + if (width < 0 || height < 0 + || width > RASTER_MAX_WIDTH || height > RASTER_MAX_HEIGHT) { + // Invalid width or height. + throw noise::ExceptionInvalidParam (); + } else if (width == 0 || height == 0) { + // An empty noise map was specified. Delete it and zero out the size + // member variables. + DeleteNoiseMapAndReset (); + } else { + // A new noise map size was specified. Allocate a new noise map buffer + // unless the current buffer is large enough for the new noise map (we + // don't want costly reallocations going on.) + size_t newMemUsage = CalcMinMemUsage (width, height); + if (m_memUsed < newMemUsage) { + // The new size is too big for the current noise map buffer. We need to + // reallocate. + DeleteNoiseMapAndReset (); + try { + m_pNoiseMap = new float[newMemUsage]; + } + catch (...) { + throw noise::ExceptionOutOfMemory (); + } + m_memUsed = newMemUsage; + } + m_stride = (int)CalcStride (width); + m_width = width; + m_height = height; + } +} + +void NoiseMap::SetValue (int x, int y, float value) +{ + if (m_pNoiseMap != NULL) { + if (x >= 0 && x < m_width && y >= 0 && y < m_height) { + *(GetSlabPtr (x, y)) = value; + } + } +} + +void NoiseMap::TakeOwnership (NoiseMap& source) +{ + // Copy the values and the noise map buffer from the source noise map to + // this noise map. Now this noise map pwnz the source buffer. + delete[] m_pNoiseMap; + m_memUsed = source.m_memUsed; + m_height = source.m_height; + m_pNoiseMap = source.m_pNoiseMap; + m_stride = source.m_stride; + m_width = source.m_width; + + // Now that the source buffer is assigned to this noise map, reset the + // source noise map object. + source.InitObj (); +} + +////////////////////////////////////////////////////////////////////////////// +// Image class + +Image::Image () +{ + InitObj (); +} + +Image::Image (int width, int height) +{ + InitObj (); + SetSize (width, height); +} + +Image::Image (const Image& rhs) +{ + InitObj (); + CopyImage (rhs); +} + +Image::~Image () +{ + delete[] m_pImage; +} + +Image& Image::operator= (const Image& rhs) +{ + CopyImage (rhs); + + return *this; +} + +void Image::Clear (const Color& value) +{ + if (m_pImage != NULL) { + for (int y = 0; y < m_height; y++) { + Color* pDest = GetSlabPtr (0, y); + for (int x = 0; x < m_width; x++) { + *pDest++ = value; + } + } + } +} + +void Image::CopyImage (const Image& source) +{ + // Resize the image buffer, then copy the slabs from the source image + // buffer to this image buffer. + SetSize (source.GetWidth (), source.GetHeight ()); + for (int y = 0; y < source.GetHeight (); y++) { + const Color* pSource = source.GetConstSlabPtr (0, y); + Color* pDest = GetSlabPtr (0, y); + memcpy (pDest, pSource, (size_t)source.GetWidth () * sizeof (float)); + } + + // Copy the border value as well. + m_borderValue = source.m_borderValue; +} + +void Image::DeleteImageAndReset () +{ + delete[] m_pImage; + InitObj (); +} + +Color Image::GetValue (int x, int y) const +{ + if (m_pImage != NULL) { + if (x >= 0 && x < m_width && y >= 0 && y < m_height) { + return *(GetConstSlabPtr (x, y)); + } + } + // The coordinates specified are outside the image. Return the border + // value. + return m_borderValue; +} + +void Image::InitObj () +{ + m_pImage = NULL; + m_height = 0; + m_width = 0; + m_stride = 0; + m_memUsed = 0; + m_borderValue = Color (0, 0, 0, 0); +} + +void Image::ReclaimMem () +{ + size_t newMemUsage = CalcMinMemUsage (m_width, m_height); + if (m_memUsed > newMemUsage) { + // There is wasted memory. Create the smallest buffer that can fit the + // data and copy the data to it. + Color* pNewImage = NULL; + try { + pNewImage = new Color[newMemUsage]; + } + catch (...) { + throw noise::ExceptionOutOfMemory (); + } + memcpy (pNewImage, m_pImage, newMemUsage * sizeof (float)); + delete[] m_pImage; + m_pImage = pNewImage; + m_memUsed = newMemUsage; + } +} + +void Image::SetSize (int width, int height) +{ + if (width < 0 || height < 0 + || width > RASTER_MAX_WIDTH || height > RASTER_MAX_HEIGHT) { + // Invalid width or height. + throw noise::ExceptionInvalidParam (); + } else if (width == 0 || height == 0) { + // An empty image was specified. Delete it and zero out the size member + // variables. + DeleteImageAndReset (); + } else { + // A new image size was specified. Allocate a new image buffer unless + // the current buffer is large enough for the new image (we don't want + // costly reallocations going on.) + size_t newMemUsage = CalcMinMemUsage (width, height); + if (m_memUsed < newMemUsage) { + // The new size is too big for the current image buffer. We need to + // reallocate. + DeleteImageAndReset (); + try { + m_pImage = new Color[newMemUsage]; + } + catch (...) { + throw noise::ExceptionOutOfMemory (); + } + m_memUsed = newMemUsage; + } + m_stride = (int)CalcStride (width); + m_width = width; + m_height = height; + } +} + +void Image::SetValue (int x, int y, const Color& value) +{ + if (m_pImage != NULL) { + if (x >= 0 && x < m_width && y >= 0 && y < m_height) { + *(GetSlabPtr (x, y)) = value; + } + } +} + +void Image::TakeOwnership (Image& source) +{ + // Copy the values and the image buffer from the source image to this image. + // Now this image pwnz the source buffer. + delete[] m_pImage; + m_memUsed = source.m_memUsed; + m_height = source.m_height; + m_pImage = source.m_pImage; + m_stride = source.m_stride; + m_width = source.m_width; + + // Now that the source buffer is assigned to this image, reset the source + // image object. + source.InitObj (); +} + +///////////////////////////////////////////////////////////////////////////// +// WriterBMP class + +int WriterBMP::CalcWidthByteCount (int width) const +{ + return ((width * 3) + 3) & ~0x03; +} + +void WriterBMP::WriteDestFile () +{ + if (m_pSourceImage == NULL) { + throw noise::ExceptionInvalidParam (); + } + + int width = m_pSourceImage->GetWidth (); + int height = m_pSourceImage->GetHeight (); + + // The width of one line in the file must be aligned on a 4-byte boundary. + int bufferSize = CalcWidthByteCount (width); + int destSize = bufferSize * height; + + // This buffer holds one horizontal line in the destination file. + noise::uint8* pLineBuffer = NULL; + + // File object used to write the file. + std::ofstream os; + os.clear (); + + // Allocate a buffer to hold one horizontal line in the bitmap. + try { + pLineBuffer = new noise::uint8[bufferSize]; + } + catch (...) { + throw noise::ExceptionOutOfMemory (); + } + + // Open the destination file. + os.open (m_destFilename.c_str (), std::ios::out | std::ios::binary); + if (os.fail () || os.bad ()) { + delete[] pLineBuffer; + throw noise::ExceptionUnknown (); + } + + // Build the header. + noise::uint8 d[4]; + os.write ("BM", 2); + os.write ((char*)UnpackLittle32 (d, destSize + BMP_HEADER_SIZE), 4); + os.write ("\0\0\0\0", 4); + os.write ((char*)UnpackLittle32 (d, (noise::uint32)BMP_HEADER_SIZE), 4); + os.write ((char*)UnpackLittle32 (d, 40), 4); // Palette offset + os.write ((char*)UnpackLittle32 (d, (noise::uint32)width ), 4); + os.write ((char*)UnpackLittle32 (d, (noise::uint32)height), 4); + os.write ((char*)UnpackLittle16 (d, 1 ), 2); // Planes per pixel + os.write ((char*)UnpackLittle16 (d, 24), 2); // Bits per plane + os.write ("\0\0\0\0", 4); // Compression (0 = none) + os.write ((char*)UnpackLittle32 (d, (noise::uint32)destSize), 4); + os.write ((char*)UnpackLittle32 (d, 2834), 4); // X pixels per meter + os.write ((char*)UnpackLittle32 (d, 2834), 4); // Y pixels per meter + os.write ("\0\0\0\0", 4); + os.write ("\0\0\0\0", 4); + if (os.fail () || os.bad ()) { + os.clear (); + os.close (); + os.clear (); + delete[] pLineBuffer; + throw noise::ExceptionUnknown (); + } + + // Build and write each horizontal line to the file. + for (int y = 0; y < height; y++) { + memset (pLineBuffer, 0, bufferSize); + Color* pSource = m_pSourceImage->GetSlabPtr (y); + noise::uint8* pDest = pLineBuffer; + for (int x = 0; x < width; x++) { + *pDest++ = pSource->blue ; + *pDest++ = pSource->green; + *pDest++ = pSource->red ; + ++pSource; + } + os.write ((char*)pLineBuffer, (size_t)bufferSize); + if (os.fail () || os.bad ()) { + os.clear (); + os.close (); + os.clear (); + delete[] pLineBuffer; + throw noise::ExceptionUnknown (); + } + } + + os.close (); + os.clear (); + delete[] pLineBuffer; +} + +///////////////////////////////////////////////////////////////////////////// +// WriterTER class + +int WriterTER::CalcWidthByteCount (int width) const +{ + return (width * sizeof (int16)); +} + +void WriterTER::WriteDestFile () +{ + if (m_pSourceNoiseMap == NULL) { + throw noise::ExceptionInvalidParam (); + } + + int width = m_pSourceNoiseMap->GetWidth (); + int height = m_pSourceNoiseMap->GetHeight (); + + int bufferSize = CalcWidthByteCount (width); + + // This buffer holds one horizontal line in the destination file. + noise::uint8* pLineBuffer = NULL; + + // File object used to write the file. + std::ofstream os; + os.clear (); + + // Allocate a buffer to hold one horizontal line in the height map. + try { + pLineBuffer = new noise::uint8[bufferSize]; + } + catch (...) { + throw noise::ExceptionOutOfMemory (); + } + + // Open the destination file. + os.open (m_destFilename.c_str (), std::ios::out | std::ios::binary); + if (os.fail () || os.bad ()) { + os.clear (); + delete[] pLineBuffer; + throw noise::ExceptionUnknown (); + } + + // Build the header. + noise::uint8 d[4]; + int16 heightScale = (int16)(floor (32768.0 / (double)m_metersPerPoint)); + os.write ("TERRAGENTERRAIN ", 16); + os.write ("SIZE", 4); + os.write ((char*)UnpackLittle16 (d, GetMin (width, height) - 1), 2); + os.write ("\0\0", 2); + os.write ("XPTS", 4); + os.write ((char*)UnpackLittle16 (d, width), 2); + os.write ("\0\0", 2); + os.write ("YPTS", 4); + os.write ((char*)UnpackLittle16 (d, height), 2); + os.write ("\0\0", 2); + os.write ("SCAL", 4); + os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4); + os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4); + os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4); + os.write ("ALTW", 4); + os.write ((char*)UnpackLittle16 (d, heightScale), 2); + os.write ("\0\0", 2); + if (os.fail () || os.bad ()) { + os.clear (); + os.close (); + os.clear (); + delete[] pLineBuffer; + throw noise::ExceptionUnknown (); + } + + // Build and write each horizontal line to the file. + for (int y = 0; y < height; y++) { + float* pSource = m_pSourceNoiseMap->GetSlabPtr (y); + noise::uint8* pDest = pLineBuffer; + for (int x = 0; x < width; x++) { + int16 scaledHeight = (int16)(floor (*pSource * 2.0)); + UnpackLittle16 (pDest, scaledHeight); + pDest += 2; + ++pSource; + } + os.write ((char*)pLineBuffer, (size_t)bufferSize); + if (os.fail () || os.bad ()) { + os.clear (); + os.close (); + os.clear (); + delete[] pLineBuffer; + throw noise::ExceptionUnknown (); + } + } + + os.close (); + os.clear (); + delete[] pLineBuffer; +} + +///////////////////////////////////////////////////////////////////////////// +// NoiseMapBuilder class + +NoiseMapBuilder::NoiseMapBuilder (): + m_pCallback (NULL), + m_destHeight (0), + m_destWidth (0), + m_pDestNoiseMap (NULL), + m_pSourceModule (NULL) +{ +} + +void NoiseMapBuilder::SetCallback (NoiseMapCallback pCallback) +{ + m_pCallback = pCallback; +} + +///////////////////////////////////////////////////////////////////////////// +// NoiseMapBuilderCylinder class + +NoiseMapBuilderCylinder::NoiseMapBuilderCylinder (): + m_lowerAngleBound (0.0), + m_lowerHeightBound (0.0), + m_upperAngleBound (0.0), + m_upperHeightBound (0.0) +{ +} + +void NoiseMapBuilderCylinder::Build () +{ + if ( m_upperAngleBound <= m_lowerAngleBound + || m_upperHeightBound <= m_lowerHeightBound + || m_destWidth <= 0 + || m_destHeight <= 0 + || m_pSourceModule == NULL + || m_pDestNoiseMap == NULL) { + throw noise::ExceptionInvalidParam (); + } + + // Resize the destination noise map so that it can store the new output + // values from the source model. + m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight); + + // Create the cylinder model. + model::Cylinder cylinderModel; + cylinderModel.SetModule (*m_pSourceModule); + + double angleExtent = m_upperAngleBound - m_lowerAngleBound ; + double heightExtent = m_upperHeightBound - m_lowerHeightBound; + double xDelta = angleExtent / (double)m_destWidth ; + double yDelta = heightExtent / (double)m_destHeight; + double curAngle = m_lowerAngleBound ; + double curHeight = m_lowerHeightBound; + + // Fill every point in the noise map with the output values from the model. + for (int y = 0; y < m_destHeight; y++) { + float* pDest = m_pDestNoiseMap->GetSlabPtr (y); + curAngle = m_lowerAngleBound; + for (int x = 0; x < m_destWidth; x++) { + float curValue = (float)cylinderModel.GetValue (curAngle, curHeight); + *pDest++ = curValue; + curAngle += xDelta; + } + curHeight += yDelta; + if (m_pCallback != NULL) { + m_pCallback (y); + } + } +} + +///////////////////////////////////////////////////////////////////////////// +// NoiseMapBuilderPlane class + +NoiseMapBuilderPlane::NoiseMapBuilderPlane (): + m_isSeamlessEnabled (false), + m_lowerXBound (0.0), + m_lowerZBound (0.0), + m_upperXBound (0.0), + m_upperZBound (0.0) +{ +} + +void NoiseMapBuilderPlane::Build () +{ + if ( m_upperXBound <= m_lowerXBound + || m_upperZBound <= m_lowerZBound + || m_destWidth <= 0 + || m_destHeight <= 0 + || m_pSourceModule == NULL + || m_pDestNoiseMap == NULL) { + throw noise::ExceptionInvalidParam (); + } + + // Resize the destination noise map so that it can store the new output + // values from the source model. + m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight); + + // Create the plane model. + model::Plane planeModel; + planeModel.SetModule (*m_pSourceModule); + + double xExtent = m_upperXBound - m_lowerXBound; + double zExtent = m_upperZBound - m_lowerZBound; + double xDelta = xExtent / (double)m_destWidth ; + double zDelta = zExtent / (double)m_destHeight; + double xCur = m_lowerXBound; + double zCur = m_lowerZBound; + + // Fill every point in the noise map with the output values from the model. + for (int z = 0; z < m_destHeight; z++) { + float* pDest = m_pDestNoiseMap->GetSlabPtr (z); + xCur = m_lowerXBound; + for (int x = 0; x < m_destWidth; x++) { + float finalValue; + if (!m_isSeamlessEnabled) { + finalValue = planeModel.GetValue (xCur, zCur); + } else { + double swValue, seValue, nwValue, neValue; + swValue = planeModel.GetValue (xCur , zCur ); + seValue = planeModel.GetValue (xCur + xExtent, zCur ); + nwValue = planeModel.GetValue (xCur , zCur + zExtent); + neValue = planeModel.GetValue (xCur + xExtent, zCur + zExtent); + double xBlend = 1.0 - ((xCur - m_lowerXBound) / xExtent); + double zBlend = 1.0 - ((zCur - m_lowerZBound) / zExtent); + double z0 = LinearInterp (swValue, seValue, xBlend); + double z1 = LinearInterp (nwValue, neValue, xBlend); + finalValue = (float)LinearInterp (z0, z1, zBlend); + } + *pDest++ = finalValue; + xCur += xDelta; + } + zCur += zDelta; + if (m_pCallback != NULL) { + m_pCallback (z); + } + } +} + +///////////////////////////////////////////////////////////////////////////// +// NoiseMapBuilderSphere class + +NoiseMapBuilderSphere::NoiseMapBuilderSphere (): + m_eastLonBound (0.0), + m_northLatBound (0.0), + m_southLatBound (0.0), + m_westLonBound (0.0) +{ +} + +void NoiseMapBuilderSphere::Build () +{ + if ( m_eastLonBound <= m_westLonBound + || m_northLatBound <= m_southLatBound + || m_destWidth <= 0 + || m_destHeight <= 0 + || m_pSourceModule == NULL + || m_pDestNoiseMap == NULL) { + throw noise::ExceptionInvalidParam (); + } + + // Resize the destination noise map so that it can store the new output + // values from the source model. + m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight); + + // Create the plane model. + model::Sphere sphereModel; + sphereModel.SetModule (*m_pSourceModule); + + double lonExtent = m_eastLonBound - m_westLonBound ; + double latExtent = m_northLatBound - m_southLatBound; + double xDelta = lonExtent / (double)m_destWidth ; + double yDelta = latExtent / (double)m_destHeight; + double curLon = m_westLonBound ; + double curLat = m_southLatBound; + + // Fill every point in the noise map with the output values from the model. + for (int y = 0; y < m_destHeight; y++) { + float* pDest = m_pDestNoiseMap->GetSlabPtr (y); + curLon = m_westLonBound; + for (int x = 0; x < m_destWidth; x++) { + float curValue = (float)sphereModel.GetValue (curLat, curLon); + *pDest++ = curValue; + curLon += xDelta; + } + curLat += yDelta; + if (m_pCallback != NULL) { + m_pCallback (y); + } + } +} + +////////////////////////////////////////////////////////////////////////////// +// RendererImage class + +RendererImage::RendererImage (): + m_isLightEnabled (false), + m_isWrapEnabled (false), + m_lightAzimuth (45.0), + m_lightBrightness (1.0), + m_lightColor (255, 255, 255, 255), + m_lightContrast (1.0), + m_lightElev (45.0), + m_lightIntensity (1.0), + m_pBackgroundImage (NULL), + m_pDestImage (NULL), + m_pSourceNoiseMap (NULL), + m_recalcLightValues (true) +{ + BuildGrayscaleGradient (); +}; + +void RendererImage::AddGradientPoint (double gradientPos, + const Color& gradientColor) +{ + m_gradient.AddGradientPoint (gradientPos, gradientColor); +} + +void RendererImage::BuildGrayscaleGradient () +{ + ClearGradient (); + m_gradient.AddGradientPoint (-1.0, Color ( 0, 0, 0, 255)); + m_gradient.AddGradientPoint ( 1.0, Color (255, 255, 255, 255)); +} + +void RendererImage::BuildTerrainGradient () +{ + ClearGradient (); + m_gradient.AddGradientPoint (-1.00, Color ( 0, 0, 128, 255)); + m_gradient.AddGradientPoint (-0.20, Color ( 32, 64, 128, 255)); + m_gradient.AddGradientPoint (-0.04, Color ( 64, 96, 192, 255)); + m_gradient.AddGradientPoint (-0.02, Color (192, 192, 128, 255)); + m_gradient.AddGradientPoint ( 0.00, Color ( 0, 192, 0, 255)); + m_gradient.AddGradientPoint ( 0.25, Color (192, 192, 0, 255)); + m_gradient.AddGradientPoint ( 0.50, Color (160, 96, 64, 255)); + m_gradient.AddGradientPoint ( 0.75, Color (128, 255, 255, 255)); + m_gradient.AddGradientPoint ( 1.00, Color (255, 255, 255, 255)); +} + +Color RendererImage::CalcDestColor (const Color& sourceColor, + const Color& backgroundColor, double lightValue) const +{ + double sourceRed = (double)sourceColor.red / 255.0; + double sourceGreen = (double)sourceColor.green / 255.0; + double sourceBlue = (double)sourceColor.blue / 255.0; + double sourceAlpha = (double)sourceColor.alpha / 255.0; + double backgroundRed = (double)backgroundColor.red / 255.0; + double backgroundGreen = (double)backgroundColor.green / 255.0; + double backgroundBlue = (double)backgroundColor.blue / 255.0; + + // First, blend the source color to the background color using the alpha + // of the source color. + double red = LinearInterp (backgroundRed, sourceRed , sourceAlpha); + double green = LinearInterp (backgroundGreen, sourceGreen, sourceAlpha); + double blue = LinearInterp (backgroundBlue, sourceBlue , sourceAlpha); + + if (m_isLightEnabled) { + + // Now calculate the light color. + double lightRed = lightValue * (double)m_lightColor.red / 255.0; + double lightGreen = lightValue * (double)m_lightColor.green / 255.0; + double lightBlue = lightValue * (double)m_lightColor.blue / 255.0; + + // Apply the light color to the new color. + red *= lightRed ; + green *= lightGreen; + blue *= lightBlue ; + } + + // Clamp the color channels to the (0..1) range. + red = (red < 0.0)? 0.0: red ; + red = (red > 1.0)? 1.0: red ; + green = (green < 0.0)? 0.0: green; + green = (green > 1.0)? 1.0: green; + blue = (blue < 0.0)? 0.0: blue ; + blue = (blue > 1.0)? 1.0: blue ; + + // Rescale the color channels to the noise::uint8 (0..255) range and return + // the new color. + Color newColor ( + (noise::uint8)((noise::uint)(red * 255.0) & 0xff), + (noise::uint8)((noise::uint)(green * 255.0) & 0xff), + (noise::uint8)((noise::uint)(blue * 255.0) & 0xff), + GetMax (sourceColor.alpha, backgroundColor.alpha)); + return newColor; +} + +double RendererImage::CalcLightIntensity (double center, double left, + double right, double down, double up) const +{ + // Recalculate the sine and cosine of the various light values if + // necessary so it does not have to be calculated each time this method is + // called. + if (m_recalcLightValues) { + m_cosAzimuth = cos (m_lightAzimuth * DEG_TO_RAD); + m_sinAzimuth = sin (m_lightAzimuth * DEG_TO_RAD); + m_cosElev = cos (m_lightElev * DEG_TO_RAD); + m_sinElev = sin (m_lightElev * DEG_TO_RAD); + m_recalcLightValues = false; + } + + // Now do the lighting calculations. + const double I_MAX = 1.0; + double io = I_MAX * SQRT_2 * m_sinElev / 2.0; + double ix = (I_MAX - io) * m_lightContrast * SQRT_2 * m_cosElev + * m_cosAzimuth; + double iy = (I_MAX - io) * m_lightContrast * SQRT_2 * m_cosElev + * m_sinAzimuth; + double intensity = (ix * (left - right) + iy * (down - up) + io); + if (intensity < 0.0) { + intensity = 0.0; + } + return intensity; +} + +void RendererImage::ClearGradient () +{ + m_gradient.Clear (); +} + +void RendererImage::Render () +{ + if ( m_pSourceNoiseMap == NULL + || m_pDestImage == NULL + || m_pSourceNoiseMap->GetWidth () <= 0 + || m_pSourceNoiseMap->GetHeight () <= 0 + || m_gradient.GetGradientPointCount () < 2) { + throw noise::ExceptionInvalidParam (); + } + + int width = m_pSourceNoiseMap->GetWidth (); + int height = m_pSourceNoiseMap->GetHeight (); + + // If a background image was provided, make sure it is the same size the + // source noise map. + if (m_pBackgroundImage != NULL) { + if ( m_pBackgroundImage->GetWidth () != width + || m_pBackgroundImage->GetHeight () != height) { + throw noise::ExceptionInvalidParam (); + } + } + + // Create the destination image. It is safe to reuse it if this is also the + // background image. + if (m_pDestImage != m_pBackgroundImage) { + m_pDestImage->SetSize (width, height); + } + + for (int y = 0; y < height; y++) { + const Color* pBackground = NULL; + if (m_pBackgroundImage != NULL) { + pBackground = m_pBackgroundImage->GetConstSlabPtr (y); + } + const float* pSource = m_pSourceNoiseMap->GetConstSlabPtr (y); + Color* pDest = m_pDestImage->GetSlabPtr (y); + for (int x = 0; x < width; x++) { + + // Get the color based on the value at the current point in the noise + // map. + Color destColor = m_gradient.GetColor (*pSource); + + // If lighting is enabled, calculate the light intensity based on the + // rate of change at the current point in the noise map. + double lightIntensity; + if (m_isLightEnabled) { + + // Calculate the positions of the current point's four-neighbors. + int xLeftOffset, xRightOffset; + int yUpOffset , yDownOffset ; + if (m_isWrapEnabled) { + if (x == 0) { + xLeftOffset = (int)width - 1; + xRightOffset = 1; + } else if (x == (int)width - 1) { + xLeftOffset = -1; + xRightOffset = -((int)width - 1); + } else { + xLeftOffset = -1; + xRightOffset = 1; + } + if (y == 0) { + yDownOffset = (int)height - 1; + yUpOffset = 1; + } else if (y == (int)height - 1) { + yDownOffset = -1; + yUpOffset = -((int)height - 1); + } else { + yDownOffset = -1; + yUpOffset = 1; + } + } else { + if (x == 0) { + xLeftOffset = 0; + xRightOffset = 1; + } else if (x == (int)width - 1) { + xLeftOffset = -1; + xRightOffset = 0; + } else { + xLeftOffset = -1; + xRightOffset = 1; + } + if (y == 0) { + yDownOffset = 0; + yUpOffset = 1; + } else if (y == (int)height - 1) { + yDownOffset = -1; + yUpOffset = 0; + } else { + yDownOffset = -1; + yUpOffset = 1; + } + } + yDownOffset *= m_pSourceNoiseMap->GetStride (); + yUpOffset *= m_pSourceNoiseMap->GetStride (); + + // Get the noise value of the current point in the source noise map + // and the noise values of its four-neighbors. + double nc = (double)(*pSource); + double nl = (double)(*(pSource + xLeftOffset )); + double nr = (double)(*(pSource + xRightOffset)); + double nd = (double)(*(pSource + yDownOffset )); + double nu = (double)(*(pSource + yUpOffset )); + + // Now we can calculate the lighting intensity. + lightIntensity = CalcLightIntensity (nc, nl, nr, nd, nu); + lightIntensity *= m_lightBrightness; + + } else { + + // These values will apply no lighting to the destination image. + lightIntensity = 1.0; + } + + // Get the current background color from the background image. + Color backgroundColor (255, 255, 255, 255); + if (m_pBackgroundImage != NULL) { + backgroundColor = *pBackground; + } + + // Blend the destination color, background color, and the light + // intensity together, then update the destination image with that + // color. + *pDest = CalcDestColor (destColor, backgroundColor, lightIntensity); + + // Go to the next point. + ++pSource; + ++pDest; + if (m_pBackgroundImage != NULL) { + ++pBackground; + } + } + } +} + +////////////////////////////////////////////////////////////////////////////// +// RendererNormalMap class + +RendererNormalMap::RendererNormalMap (): + m_bumpHeight (1.0), + m_isWrapEnabled (false), + m_pDestImage (NULL), + m_pSourceNoiseMap (NULL) +{ +}; + +Color RendererNormalMap::CalcNormalColor (double nc, double nr, double nu, + double bumpHeight) const +{ + // Calculate the surface normal. + nc *= bumpHeight; + nr *= bumpHeight; + nu *= bumpHeight; + double ncr = (nc - nr); + double ncu = (nc - nu); + double d = sqrt ((ncu * ncu) + (ncr * ncr) + 1); + double vxc = (nc - nr) / d; + double vyc = (nc - nu) / d; + double vzc = 1.0 / d; + + // Map the normal range from the (-1.0 .. +1.0) range to the (0 .. 255) + // range. + noise::uint8 xc, yc, zc; + xc = (noise::uint8)((noise::uint)((floor)((vxc + 1.0) * 127.5)) & 0xff); + yc = (noise::uint8)((noise::uint)((floor)((vyc + 1.0) * 127.5)) & 0xff); + zc = (noise::uint8)((noise::uint)((floor)((vzc + 1.0) * 127.5)) & 0xff); + + return Color (xc, yc, zc, 0); +} + +void RendererNormalMap::Render () +{ + if ( m_pSourceNoiseMap == NULL + || m_pDestImage == NULL + || m_pSourceNoiseMap->GetWidth () <= 0 + || m_pSourceNoiseMap->GetHeight () <= 0) { + throw noise::ExceptionInvalidParam (); + } + + int width = m_pSourceNoiseMap->GetWidth (); + int height = m_pSourceNoiseMap->GetHeight (); + + for (int y = 0; y < height; y++) { + const float* pSource = m_pSourceNoiseMap->GetConstSlabPtr (y); + Color* pDest = m_pDestImage->GetSlabPtr (y); + for (int x = 0; x < width; x++) { + + // Calculate the positions of the current point's right and up + // neighbors. + int xRightOffset, yUpOffset; + if (m_isWrapEnabled) { + if (x == (int)width - 1) { + xRightOffset = -((int)width - 1); + } else { + xRightOffset = 1; + } + if (y == (int)height - 1) { + yUpOffset = -((int)height - 1); + } else { + yUpOffset = 1; + } + } else { + if (x == (int)width - 1) { + xRightOffset = 0; + } else { + xRightOffset = 1; + } + if (y == (int)height - 1) { + yUpOffset = 0; + } else { + yUpOffset = 1; + } + } + yUpOffset *= m_pSourceNoiseMap->GetStride (); + + // Get the noise value of the current point in the source noise map + // and the noise values of its right and up neighbors. + double nc = (double)(*pSource); + double nr = (double)(*(pSource + xRightOffset)); + double nu = (double)(*(pSource + yUpOffset )); + + // Calculate the normal product. + *pDest = CalcNormalColor (nc, nr, nu, m_bumpHeight); + + // Go to the next point. + ++pSource; + ++pDest; + } + } +} -- cgit v1.2.3