// noiseutils.cpp // // Copyright (C) 2003-2005 Jason Bevins // // This library is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation; either version 2.1 of the License, or (at // your option) any later version. // // This library is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public // License (COPYING.txt) for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this library; if not, write to the Free Software Foundation, // Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // The developer's email is jlbezigvins@gmzigail.com (for great email, take // off every 'zig'.) // #include #include #include #include "noiseutils.h" using namespace noise; using namespace noise::model; using namespace noise::module; // Bitmap header size. const int BMP_HEADER_SIZE = 54; // Direction of the light source, in compass degrees (0 = north, 90 = east, // 180 = south, 270 = east) const double DEFAULT_LIGHT_AZIMUTH = 45.0; // Amount of contrast between light and dark areas. const double DEFAULT_LIGHT_CONTRAST = 1.0; // Elevation of the light source above the horizon, in degrees (0 = on // horizon, 90 = directly overhead) const double DEFAULT_LIGHT_ELEVATION = 45.0; ////////////////////////////////////////////////////////////////////////////// // Miscellaneous functions namespace noise { namespace utils { // Performs linear interpolation between two 8-bit channel values. inline noise::uint8 BlendChannel (const uint8 channel0, const uint8 channel1, float alpha) { float c0 = (float)channel0 / 255.0; float c1 = (float)channel1 / 255.0; return (noise::uint8)(((c1 * alpha) + (c0 * (1.0f - alpha))) * 255.0f); } // Performs linear interpolation between two colors and stores the result // in out. inline void LinearInterpColor (const Color& color0, const Color& color1, float alpha, Color& out) { out.alpha = BlendChannel (color0.alpha, color1.alpha, alpha); out.blue = BlendChannel (color0.blue , color1.blue , alpha); out.green = BlendChannel (color0.green, color1.green, alpha); out.red = BlendChannel (color0.red , color1.red , alpha); } // Unpacks a floating-point value into four bytes. This function is // specific to Intel machines. A portable version will come soon (I // hope.) inline noise::uint8* UnpackFloat (noise::uint8* bytes, float value) { noise::uint8* pBytes = (noise::uint8*)(&value); bytes[0] = *pBytes++; bytes[1] = *pBytes++; bytes[2] = *pBytes++; bytes[3] = *pBytes++; return bytes; } // Unpacks a 16-bit integer value into two bytes in little endian format. inline noise::uint8* UnpackLittle16 (noise::uint8* bytes, noise::uint16 integer) { bytes[0] = (noise::uint8)((integer & 0x00ff) ); bytes[1] = (noise::uint8)((integer & 0xff00) >> 8 ); return bytes; } // Unpacks a 32-bit integer value into four bytes in little endian format. inline noise::uint8* UnpackLittle32 (noise::uint8* bytes, noise::uint32 integer) { bytes[0] = (noise::uint8)((integer & 0x000000ff) ); bytes[1] = (noise::uint8)((integer & 0x0000ff00) >> 8 ); bytes[2] = (noise::uint8)((integer & 0x00ff0000) >> 16); bytes[3] = (noise::uint8)((integer & 0xff000000) >> 24); return bytes; } } } using namespace noise; using namespace noise::utils; ////////////////////////////////////////////////////////////////////////////// // GradientColor class GradientColor::GradientColor () { m_pGradientPoints = NULL; } GradientColor::~GradientColor () { delete[] m_pGradientPoints; } void GradientColor::AddGradientPoint (double gradientPos, const Color& gradientColor) { // Find the insertion point for the new gradient point and insert the new // gradient point at that insertion point. The gradient point array will // remain sorted by gradient position. int insertionPos = FindInsertionPos (gradientPos); InsertAtPos (insertionPos, gradientPos, gradientColor); } void GradientColor::Clear () { delete[] m_pGradientPoints; m_pGradientPoints = NULL; m_gradientPointCount = 0; } int GradientColor::FindInsertionPos (double gradientPos) { int insertionPos; for (insertionPos = 0; insertionPos < m_gradientPointCount; insertionPos++) { if (gradientPos < m_pGradientPoints[insertionPos].pos) { // We found the array index in which to insert the new gradient point. // Exit now. break; } else if (gradientPos == m_pGradientPoints[insertionPos].pos) { // Each gradient point is required to contain a unique gradient // position, so throw an exception. throw noise::ExceptionInvalidParam (); } } return insertionPos; } const Color& GradientColor::GetColor (double gradientPos) const { assert (m_gradientPointCount >= 2); // Find the first element in the gradient point array that has a gradient // position larger than the gradient position passed to this method. int indexPos; for (indexPos = 0; indexPos < m_gradientPointCount; indexPos++) { if (gradientPos < m_pGradientPoints[indexPos].pos) { break; } } // Find the two nearest gradient points so that we can perform linear // interpolation on the color. int index0 = ClampValue (indexPos - 1, 0, m_gradientPointCount - 1); int index1 = ClampValue (indexPos , 0, m_gradientPointCount - 1); // If some gradient points are missing (which occurs if the gradient // position passed to this method is greater than the largest gradient // position or less than the smallest gradient position in the array), get // the corresponding gradient color of the nearest gradient point and exit // now. if (index0 == index1) { m_workingColor = m_pGradientPoints[index1].color; return m_workingColor; } // Compute the alpha value used for linear interpolation. double input0 = m_pGradientPoints[index0].pos; double input1 = m_pGradientPoints[index1].pos; double alpha = (gradientPos - input0) / (input1 - input0); // Now perform the linear interpolation given the alpha value. const Color& color0 = m_pGradientPoints[index0].color; const Color& color1 = m_pGradientPoints[index1].color; LinearInterpColor (color0, color1, (float)alpha, m_workingColor); return m_workingColor; } void GradientColor::InsertAtPos (int insertionPos, double gradientPos, const Color& gradientColor) { // Make room for the new gradient point at the specified insertion position // within the gradient point array. The insertion position is determined by // the gradient point's position; the gradient points must be sorted by // gradient position within that array. GradientPoint* newGradientPoints; newGradientPoints = new GradientPoint[m_gradientPointCount + 1]; for (int i = 0; i < m_gradientPointCount; i++) { if (i < insertionPos) { newGradientPoints[i] = m_pGradientPoints[i]; } else { newGradientPoints[i + 1] = m_pGradientPoints[i]; } } delete[] m_pGradientPoints; m_pGradientPoints = newGradientPoints; ++m_gradientPointCount; // Now that we've made room for the new gradient point within the array, add // the new gradient point. m_pGradientPoints[insertionPos].pos = gradientPos ; m_pGradientPoints[insertionPos].color = gradientColor; } ////////////////////////////////////////////////////////////////////////////// // NoiseMap class NoiseMap::NoiseMap () { InitObj (); } NoiseMap::NoiseMap (int width, int height) { InitObj (); SetSize (width, height); } NoiseMap::NoiseMap (const NoiseMap& rhs) { InitObj (); CopyNoiseMap (rhs); } NoiseMap::~NoiseMap () { delete[] m_pNoiseMap; } NoiseMap& NoiseMap::operator= (const NoiseMap& rhs) { CopyNoiseMap (rhs); return *this; } void NoiseMap::Clear (float value) { if (m_pNoiseMap != NULL) { for (int y = 0; y < m_height; y++) { float* pDest = GetSlabPtr (0, y); for (int x = 0; x < m_width; x++) { *pDest++ = value; } } } } void NoiseMap::CopyNoiseMap (const NoiseMap& source) { // Resize the noise map buffer, then copy the slabs from the source noise // map buffer to this noise map buffer. SetSize (source.GetWidth (), source.GetHeight ()); for (int y = 0; y < source.GetHeight (); y++) { const float* pSource = source.GetConstSlabPtr (0, y); float* pDest = GetSlabPtr (0, y); memcpy (pDest, pSource, (size_t)source.GetWidth () * sizeof (float)); } // Copy the border value as well. m_borderValue = source.m_borderValue; } void NoiseMap::DeleteNoiseMapAndReset () { delete[] m_pNoiseMap; InitObj (); } float NoiseMap::GetValue (int x, int y) const { if (m_pNoiseMap != NULL) { if (x >= 0 && x < m_width && y >= 0 && y < m_height) { return *(GetConstSlabPtr (x, y)); } } // The coordinates specified are outside the noise map. Return the border // value. return m_borderValue; } void NoiseMap::InitObj () { m_pNoiseMap = NULL; m_height = 0; m_width = 0; m_stride = 0; m_memUsed = 0; m_borderValue = 0.0; } void NoiseMap::ReclaimMem () { size_t newMemUsage = CalcMinMemUsage (m_width, m_height); if (m_memUsed > newMemUsage) { // There is wasted memory. Create the smallest buffer that can fit the // data and copy the data to it. float* pNewNoiseMap = NULL; try { pNewNoiseMap = new float[newMemUsage]; } catch (...) { throw noise::ExceptionOutOfMemory (); } memcpy (pNewNoiseMap, m_pNoiseMap, newMemUsage * sizeof (float)); delete[] m_pNoiseMap; m_pNoiseMap = pNewNoiseMap; m_memUsed = newMemUsage; } } void NoiseMap::SetSize (int width, int height) { if (width < 0 || height < 0 || width > RASTER_MAX_WIDTH || height > RASTER_MAX_HEIGHT) { // Invalid width or height. throw noise::ExceptionInvalidParam (); } else if (width == 0 || height == 0) { // An empty noise map was specified. Delete it and zero out the size // member variables. DeleteNoiseMapAndReset (); } else { // A new noise map size was specified. Allocate a new noise map buffer // unless the current buffer is large enough for the new noise map (we // don't want costly reallocations going on.) size_t newMemUsage = CalcMinMemUsage (width, height); if (m_memUsed < newMemUsage) { // The new size is too big for the current noise map buffer. We need to // reallocate. DeleteNoiseMapAndReset (); try { m_pNoiseMap = new float[newMemUsage]; } catch (...) { throw noise::ExceptionOutOfMemory (); } m_memUsed = newMemUsage; } m_stride = (int)CalcStride (width); m_width = width; m_height = height; } } void NoiseMap::SetValue (int x, int y, float value) { if (m_pNoiseMap != NULL) { if (x >= 0 && x < m_width && y >= 0 && y < m_height) { *(GetSlabPtr (x, y)) = value; } } } void NoiseMap::TakeOwnership (NoiseMap& source) { // Copy the values and the noise map buffer from the source noise map to // this noise map. Now this noise map pwnz the source buffer. delete[] m_pNoiseMap; m_memUsed = source.m_memUsed; m_height = source.m_height; m_pNoiseMap = source.m_pNoiseMap; m_stride = source.m_stride; m_width = source.m_width; // Now that the source buffer is assigned to this noise map, reset the // source noise map object. source.InitObj (); } ////////////////////////////////////////////////////////////////////////////// // Image class Image::Image () { InitObj (); } Image::Image (int width, int height) { InitObj (); SetSize (width, height); } Image::Image (const Image& rhs) { InitObj (); CopyImage (rhs); } Image::~Image () { delete[] m_pImage; } Image& Image::operator= (const Image& rhs) { CopyImage (rhs); return *this; } void Image::Clear (const Color& value) { if (m_pImage != NULL) { for (int y = 0; y < m_height; y++) { Color* pDest = GetSlabPtr (0, y); for (int x = 0; x < m_width; x++) { *pDest++ = value; } } } } void Image::CopyImage (const Image& source) { // Resize the image buffer, then copy the slabs from the source image // buffer to this image buffer. SetSize (source.GetWidth (), source.GetHeight ()); for (int y = 0; y < source.GetHeight (); y++) { const Color* pSource = source.GetConstSlabPtr (0, y); Color* pDest = GetSlabPtr (0, y); memcpy (pDest, pSource, (size_t)source.GetWidth () * sizeof (float)); } // Copy the border value as well. m_borderValue = source.m_borderValue; } void Image::DeleteImageAndReset () { delete[] m_pImage; InitObj (); } Color Image::GetValue (int x, int y) const { if (m_pImage != NULL) { if (x >= 0 && x < m_width && y >= 0 && y < m_height) { return *(GetConstSlabPtr (x, y)); } } // The coordinates specified are outside the image. Return the border // value. return m_borderValue; } void Image::InitObj () { m_pImage = NULL; m_height = 0; m_width = 0; m_stride = 0; m_memUsed = 0; m_borderValue = Color (0, 0, 0, 0); } void Image::ReclaimMem () { size_t newMemUsage = CalcMinMemUsage (m_width, m_height); if (m_memUsed > newMemUsage) { // There is wasted memory. Create the smallest buffer that can fit the // data and copy the data to it. Color* pNewImage = NULL; try { pNewImage = new Color[newMemUsage]; } catch (...) { throw noise::ExceptionOutOfMemory (); } memcpy (pNewImage, m_pImage, newMemUsage * sizeof (float)); delete[] m_pImage; m_pImage = pNewImage; m_memUsed = newMemUsage; } } void Image::SetSize (int width, int height) { if (width < 0 || height < 0 || width > RASTER_MAX_WIDTH || height > RASTER_MAX_HEIGHT) { // Invalid width or height. throw noise::ExceptionInvalidParam (); } else if (width == 0 || height == 0) { // An empty image was specified. Delete it and zero out the size member // variables. DeleteImageAndReset (); } else { // A new image size was specified. Allocate a new image buffer unless // the current buffer is large enough for the new image (we don't want // costly reallocations going on.) size_t newMemUsage = CalcMinMemUsage (width, height); if (m_memUsed < newMemUsage) { // The new size is too big for the current image buffer. We need to // reallocate. DeleteImageAndReset (); try { m_pImage = new Color[newMemUsage]; } catch (...) { throw noise::ExceptionOutOfMemory (); } m_memUsed = newMemUsage; } m_stride = (int)CalcStride (width); m_width = width; m_height = height; } } void Image::SetValue (int x, int y, const Color& value) { if (m_pImage != NULL) { if (x >= 0 && x < m_width && y >= 0 && y < m_height) { *(GetSlabPtr (x, y)) = value; } } } void Image::TakeOwnership (Image& source) { // Copy the values and the image buffer from the source image to this image. // Now this image pwnz the source buffer. delete[] m_pImage; m_memUsed = source.m_memUsed; m_height = source.m_height; m_pImage = source.m_pImage; m_stride = source.m_stride; m_width = source.m_width; // Now that the source buffer is assigned to this image, reset the source // image object. source.InitObj (); } ///////////////////////////////////////////////////////////////////////////// // WriterBMP class int WriterBMP::CalcWidthByteCount (int width) const { return ((width * 3) + 3) & ~0x03; } void WriterBMP::WriteDestFile () { if (m_pSourceImage == NULL) { throw noise::ExceptionInvalidParam (); } int width = m_pSourceImage->GetWidth (); int height = m_pSourceImage->GetHeight (); // The width of one line in the file must be aligned on a 4-byte boundary. int bufferSize = CalcWidthByteCount (width); int destSize = bufferSize * height; // This buffer holds one horizontal line in the destination file. noise::uint8* pLineBuffer = NULL; // File object used to write the file. std::ofstream os; os.clear (); // Allocate a buffer to hold one horizontal line in the bitmap. try { pLineBuffer = new noise::uint8[bufferSize]; } catch (...) { throw noise::ExceptionOutOfMemory (); } // Open the destination file. os.open (m_destFilename.c_str (), std::ios::out | std::ios::binary); if (os.fail () || os.bad ()) { delete[] pLineBuffer; throw noise::ExceptionUnknown (); } // Build the header. noise::uint8 d[4]; os.write ("BM", 2); os.write ((char*)UnpackLittle32 (d, destSize + BMP_HEADER_SIZE), 4); os.write ("\0\0\0\0", 4); os.write ((char*)UnpackLittle32 (d, (noise::uint32)BMP_HEADER_SIZE), 4); os.write ((char*)UnpackLittle32 (d, 40), 4); // Palette offset os.write ((char*)UnpackLittle32 (d, (noise::uint32)width ), 4); os.write ((char*)UnpackLittle32 (d, (noise::uint32)height), 4); os.write ((char*)UnpackLittle16 (d, 1 ), 2); // Planes per pixel os.write ((char*)UnpackLittle16 (d, 24), 2); // Bits per plane os.write ("\0\0\0\0", 4); // Compression (0 = none) os.write ((char*)UnpackLittle32 (d, (noise::uint32)destSize), 4); os.write ((char*)UnpackLittle32 (d, 2834), 4); // X pixels per meter os.write ((char*)UnpackLittle32 (d, 2834), 4); // Y pixels per meter os.write ("\0\0\0\0", 4); os.write ("\0\0\0\0", 4); if (os.fail () || os.bad ()) { os.clear (); os.close (); os.clear (); delete[] pLineBuffer; throw noise::ExceptionUnknown (); } // Build and write each horizontal line to the file. for (int y = 0; y < height; y++) { memset (pLineBuffer, 0, bufferSize); Color* pSource = m_pSourceImage->GetSlabPtr (y); noise::uint8* pDest = pLineBuffer; for (int x = 0; x < width; x++) { *pDest++ = pSource->blue ; *pDest++ = pSource->green; *pDest++ = pSource->red ; ++pSource; } os.write ((char*)pLineBuffer, (size_t)bufferSize); if (os.fail () || os.bad ()) { os.clear (); os.close (); os.clear (); delete[] pLineBuffer; throw noise::ExceptionUnknown (); } } os.close (); os.clear (); delete[] pLineBuffer; } ///////////////////////////////////////////////////////////////////////////// // WriterTER class int WriterTER::CalcWidthByteCount (int width) const { return (width * sizeof (int16)); } void WriterTER::WriteDestFile () { if (m_pSourceNoiseMap == NULL) { throw noise::ExceptionInvalidParam (); } int width = m_pSourceNoiseMap->GetWidth (); int height = m_pSourceNoiseMap->GetHeight (); int bufferSize = CalcWidthByteCount (width); // This buffer holds one horizontal line in the destination file. noise::uint8* pLineBuffer = NULL; // File object used to write the file. std::ofstream os; os.clear (); // Allocate a buffer to hold one horizontal line in the height map. try { pLineBuffer = new noise::uint8[bufferSize]; } catch (...) { throw noise::ExceptionOutOfMemory (); } // Open the destination file. os.open (m_destFilename.c_str (), std::ios::out | std::ios::binary); if (os.fail () || os.bad ()) { os.clear (); delete[] pLineBuffer; throw noise::ExceptionUnknown (); } // Build the header. noise::uint8 d[4]; int16 heightScale = (int16)(floor (32768.0 / (double)m_metersPerPoint)); os.write ("TERRAGENTERRAIN ", 16); os.write ("SIZE", 4); os.write ((char*)UnpackLittle16 (d, GetMin (width, height) - 1), 2); os.write ("\0\0", 2); os.write ("XPTS", 4); os.write ((char*)UnpackLittle16 (d, width), 2); os.write ("\0\0", 2); os.write ("YPTS", 4); os.write ((char*)UnpackLittle16 (d, height), 2); os.write ("\0\0", 2); os.write ("SCAL", 4); os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4); os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4); os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4); os.write ("ALTW", 4); os.write ((char*)UnpackLittle16 (d, heightScale), 2); os.write ("\0\0", 2); if (os.fail () || os.bad ()) { os.clear (); os.close (); os.clear (); delete[] pLineBuffer; throw noise::ExceptionUnknown (); } // Build and write each horizontal line to the file. for (int y = 0; y < height; y++) { float* pSource = m_pSourceNoiseMap->GetSlabPtr (y); noise::uint8* pDest = pLineBuffer; for (int x = 0; x < width; x++) { int16 scaledHeight = (int16)(floor (*pSource * 2.0)); UnpackLittle16 (pDest, scaledHeight); pDest += 2; ++pSource; } os.write ((char*)pLineBuffer, (size_t)bufferSize); if (os.fail () || os.bad ()) { os.clear (); os.close (); os.clear (); delete[] pLineBuffer; throw noise::ExceptionUnknown (); } } os.close (); os.clear (); delete[] pLineBuffer; } ///////////////////////////////////////////////////////////////////////////// // NoiseMapBuilder class NoiseMapBuilder::NoiseMapBuilder (): m_pCallback (NULL), m_destHeight (0), m_destWidth (0), m_pDestNoiseMap (NULL), m_pSourceModule (NULL) { } void NoiseMapBuilder::SetCallback (NoiseMapCallback pCallback) { m_pCallback = pCallback; } ///////////////////////////////////////////////////////////////////////////// // NoiseMapBuilderCylinder class NoiseMapBuilderCylinder::NoiseMapBuilderCylinder (): m_lowerAngleBound (0.0), m_lowerHeightBound (0.0), m_upperAngleBound (0.0), m_upperHeightBound (0.0) { } void NoiseMapBuilderCylinder::Build () { if ( m_upperAngleBound <= m_lowerAngleBound || m_upperHeightBound <= m_lowerHeightBound || m_destWidth <= 0 || m_destHeight <= 0 || m_pSourceModule == NULL || m_pDestNoiseMap == NULL) { throw noise::ExceptionInvalidParam (); } // Resize the destination noise map so that it can store the new output // values from the source model. m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight); // Create the cylinder model. model::Cylinder cylinderModel; cylinderModel.SetModule (*m_pSourceModule); double angleExtent = m_upperAngleBound - m_lowerAngleBound ; double heightExtent = m_upperHeightBound - m_lowerHeightBound; double xDelta = angleExtent / (double)m_destWidth ; double yDelta = heightExtent / (double)m_destHeight; double curAngle = m_lowerAngleBound ; double curHeight = m_lowerHeightBound; // Fill every point in the noise map with the output values from the model. for (int y = 0; y < m_destHeight; y++) { float* pDest = m_pDestNoiseMap->GetSlabPtr (y); curAngle = m_lowerAngleBound; for (int x = 0; x < m_destWidth; x++) { float curValue = (float)cylinderModel.GetValue (curAngle, curHeight); *pDest++ = curValue; curAngle += xDelta; } curHeight += yDelta; if (m_pCallback != NULL) { m_pCallback (y); } } } ///////////////////////////////////////////////////////////////////////////// // NoiseMapBuilderPlane class NoiseMapBuilderPlane::NoiseMapBuilderPlane (): m_isSeamlessEnabled (false), m_lowerXBound (0.0), m_lowerZBound (0.0), m_upperXBound (0.0), m_upperZBound (0.0) { } void NoiseMapBuilderPlane::Build () { if ( m_upperXBound <= m_lowerXBound || m_upperZBound <= m_lowerZBound || m_destWidth <= 0 || m_destHeight <= 0 || m_pSourceModule == NULL || m_pDestNoiseMap == NULL) { throw noise::ExceptionInvalidParam (); } // Resize the destination noise map so that it can store the new output // values from the source model. m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight); // Create the plane model. model::Plane planeModel; planeModel.SetModule (*m_pSourceModule); double xExtent = m_upperXBound - m_lowerXBound; double zExtent = m_upperZBound - m_lowerZBound; double xDelta = xExtent / (double)m_destWidth ; double zDelta = zExtent / (double)m_destHeight; double xCur = m_lowerXBound; double zCur = m_lowerZBound; // Fill every point in the noise map with the output values from the model. for (int z = 0; z < m_destHeight; z++) { float* pDest = m_pDestNoiseMap->GetSlabPtr (z); xCur = m_lowerXBound; for (int x = 0; x < m_destWidth; x++) { float finalValue; if (!m_isSeamlessEnabled) { finalValue = planeModel.GetValue (xCur, zCur); } else { double swValue, seValue, nwValue, neValue; swValue = planeModel.GetValue (xCur , zCur ); seValue = planeModel.GetValue (xCur + xExtent, zCur ); nwValue = planeModel.GetValue (xCur , zCur + zExtent); neValue = planeModel.GetValue (xCur + xExtent, zCur + zExtent); double xBlend = 1.0 - ((xCur - m_lowerXBound) / xExtent); double zBlend = 1.0 - ((zCur - m_lowerZBound) / zExtent); double z0 = LinearInterp (swValue, seValue, xBlend); double z1 = LinearInterp (nwValue, neValue, xBlend); finalValue = (float)LinearInterp (z0, z1, zBlend); } *pDest++ = finalValue; xCur += xDelta; } zCur += zDelta; if (m_pCallback != NULL) { m_pCallback (z); } } } ///////////////////////////////////////////////////////////////////////////// // NoiseMapBuilderSphere class NoiseMapBuilderSphere::NoiseMapBuilderSphere (): m_eastLonBound (0.0), m_northLatBound (0.0), m_southLatBound (0.0), m_westLonBound (0.0) { } void NoiseMapBuilderSphere::Build () { if ( m_eastLonBound <= m_westLonBound || m_northLatBound <= m_southLatBound || m_destWidth <= 0 || m_destHeight <= 0 || m_pSourceModule == NULL || m_pDestNoiseMap == NULL) { throw noise::ExceptionInvalidParam (); } // Resize the destination noise map so that it can store the new output // values from the source model. m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight); // Create the plane model. model::Sphere sphereModel; sphereModel.SetModule (*m_pSourceModule); double lonExtent = m_eastLonBound - m_westLonBound ; double latExtent = m_northLatBound - m_southLatBound; double xDelta = lonExtent / (double)m_destWidth ; double yDelta = latExtent / (double)m_destHeight; double curLon = m_westLonBound ; double curLat = m_southLatBound; // Fill every point in the noise map with the output values from the model. for (int y = 0; y < m_destHeight; y++) { float* pDest = m_pDestNoiseMap->GetSlabPtr (y); curLon = m_westLonBound; for (int x = 0; x < m_destWidth; x++) { float curValue = (float)sphereModel.GetValue (curLat, curLon); *pDest++ = curValue; curLon += xDelta; } curLat += yDelta; if (m_pCallback != NULL) { m_pCallback (y); } } } ////////////////////////////////////////////////////////////////////////////// // RendererImage class RendererImage::RendererImage (): m_isLightEnabled (false), m_isWrapEnabled (false), m_lightAzimuth (45.0), m_lightBrightness (1.0), m_lightColor (255, 255, 255, 255), m_lightContrast (1.0), m_lightElev (45.0), m_lightIntensity (1.0), m_pBackgroundImage (NULL), m_pDestImage (NULL), m_pSourceNoiseMap (NULL), m_recalcLightValues (true) { BuildGrayscaleGradient (); }; void RendererImage::AddGradientPoint (double gradientPos, const Color& gradientColor) { m_gradient.AddGradientPoint (gradientPos, gradientColor); } void RendererImage::BuildGrayscaleGradient () { ClearGradient (); m_gradient.AddGradientPoint (-1.0, Color ( 0, 0, 0, 255)); m_gradient.AddGradientPoint ( 1.0, Color (255, 255, 255, 255)); } void RendererImage::BuildTerrainGradient () { ClearGradient (); m_gradient.AddGradientPoint (-1.00, Color ( 0, 0, 128, 255)); m_gradient.AddGradientPoint (-0.20, Color ( 32, 64, 128, 255)); m_gradient.AddGradientPoint (-0.04, Color ( 64, 96, 192, 255)); m_gradient.AddGradientPoint (-0.02, Color (192, 192, 128, 255)); m_gradient.AddGradientPoint ( 0.00, Color ( 0, 192, 0, 255)); m_gradient.AddGradientPoint ( 0.25, Color (192, 192, 0, 255)); m_gradient.AddGradientPoint ( 0.50, Color (160, 96, 64, 255)); m_gradient.AddGradientPoint ( 0.75, Color (128, 255, 255, 255)); m_gradient.AddGradientPoint ( 1.00, Color (255, 255, 255, 255)); } Color RendererImage::CalcDestColor (const Color& sourceColor, const Color& backgroundColor, double lightValue) const { double sourceRed = (double)sourceColor.red / 255.0; double sourceGreen = (double)sourceColor.green / 255.0; double sourceBlue = (double)sourceColor.blue / 255.0; double sourceAlpha = (double)sourceColor.alpha / 255.0; double backgroundRed = (double)backgroundColor.red / 255.0; double backgroundGreen = (double)backgroundColor.green / 255.0; double backgroundBlue = (double)backgroundColor.blue / 255.0; // First, blend the source color to the background color using the alpha // of the source color. double red = LinearInterp (backgroundRed, sourceRed , sourceAlpha); double green = LinearInterp (backgroundGreen, sourceGreen, sourceAlpha); double blue = LinearInterp (backgroundBlue, sourceBlue , sourceAlpha); if (m_isLightEnabled) { // Now calculate the light color. double lightRed = lightValue * (double)m_lightColor.red / 255.0; double lightGreen = lightValue * (double)m_lightColor.green / 255.0; double lightBlue = lightValue * (double)m_lightColor.blue / 255.0; // Apply the light color to the new color. red *= lightRed ; green *= lightGreen; blue *= lightBlue ; } // Clamp the color channels to the (0..1) range. red = (red < 0.0)? 0.0: red ; red = (red > 1.0)? 1.0: red ; green = (green < 0.0)? 0.0: green; green = (green > 1.0)? 1.0: green; blue = (blue < 0.0)? 0.0: blue ; blue = (blue > 1.0)? 1.0: blue ; // Rescale the color channels to the noise::uint8 (0..255) range and return // the new color. Color newColor ( (noise::uint8)((noise::uint)(red * 255.0) & 0xff), (noise::uint8)((noise::uint)(green * 255.0) & 0xff), (noise::uint8)((noise::uint)(blue * 255.0) & 0xff), GetMax (sourceColor.alpha, backgroundColor.alpha)); return newColor; } double RendererImage::CalcLightIntensity (double center, double left, double right, double down, double up) const { // Recalculate the sine and cosine of the various light values if // necessary so it does not have to be calculated each time this method is // called. if (m_recalcLightValues) { m_cosAzimuth = cos (m_lightAzimuth * DEG_TO_RAD); m_sinAzimuth = sin (m_lightAzimuth * DEG_TO_RAD); m_cosElev = cos (m_lightElev * DEG_TO_RAD); m_sinElev = sin (m_lightElev * DEG_TO_RAD); m_recalcLightValues = false; } // Now do the lighting calculations. const double I_MAX = 1.0; double io = I_MAX * SQRT_2 * m_sinElev / 2.0; double ix = (I_MAX - io) * m_lightContrast * SQRT_2 * m_cosElev * m_cosAzimuth; double iy = (I_MAX - io) * m_lightContrast * SQRT_2 * m_cosElev * m_sinAzimuth; double intensity = (ix * (left - right) + iy * (down - up) + io); if (intensity < 0.0) { intensity = 0.0; } return intensity; } void RendererImage::ClearGradient () { m_gradient.Clear (); } void RendererImage::Render () { if ( m_pSourceNoiseMap == NULL || m_pDestImage == NULL || m_pSourceNoiseMap->GetWidth () <= 0 || m_pSourceNoiseMap->GetHeight () <= 0 || m_gradient.GetGradientPointCount () < 2) { throw noise::ExceptionInvalidParam (); } int width = m_pSourceNoiseMap->GetWidth (); int height = m_pSourceNoiseMap->GetHeight (); // If a background image was provided, make sure it is the same size the // source noise map. if (m_pBackgroundImage != NULL) { if ( m_pBackgroundImage->GetWidth () != width || m_pBackgroundImage->GetHeight () != height) { throw noise::ExceptionInvalidParam (); } } // Create the destination image. It is safe to reuse it if this is also the // background image. if (m_pDestImage != m_pBackgroundImage) { m_pDestImage->SetSize (width, height); } for (int y = 0; y < height; y++) { const Color* pBackground = NULL; if (m_pBackgroundImage != NULL) { pBackground = m_pBackgroundImage->GetConstSlabPtr (y); } const float* pSource = m_pSourceNoiseMap->GetConstSlabPtr (y); Color* pDest = m_pDestImage->GetSlabPtr (y); for (int x = 0; x < width; x++) { // Get the color based on the value at the current point in the noise // map. Color destColor = m_gradient.GetColor (*pSource); // If lighting is enabled, calculate the light intensity based on the // rate of change at the current point in the noise map. double lightIntensity; if (m_isLightEnabled) { // Calculate the positions of the current point's four-neighbors. int xLeftOffset, xRightOffset; int yUpOffset , yDownOffset ; if (m_isWrapEnabled) { if (x == 0) { xLeftOffset = (int)width - 1; xRightOffset = 1; } else if (x == (int)width - 1) { xLeftOffset = -1; xRightOffset = -((int)width - 1); } else { xLeftOffset = -1; xRightOffset = 1; } if (y == 0) { yDownOffset = (int)height - 1; yUpOffset = 1; } else if (y == (int)height - 1) { yDownOffset = -1; yUpOffset = -((int)height - 1); } else { yDownOffset = -1; yUpOffset = 1; } } else { if (x == 0) { xLeftOffset = 0; xRightOffset = 1; } else if (x == (int)width - 1) { xLeftOffset = -1; xRightOffset = 0; } else { xLeftOffset = -1; xRightOffset = 1; } if (y == 0) { yDownOffset = 0; yUpOffset = 1; } else if (y == (int)height - 1) { yDownOffset = -1; yUpOffset = 0; } else { yDownOffset = -1; yUpOffset = 1; } } yDownOffset *= m_pSourceNoiseMap->GetStride (); yUpOffset *= m_pSourceNoiseMap->GetStride (); // Get the noise value of the current point in the source noise map // and the noise values of its four-neighbors. double nc = (double)(*pSource); double nl = (double)(*(pSource + xLeftOffset )); double nr = (double)(*(pSource + xRightOffset)); double nd = (double)(*(pSource + yDownOffset )); double nu = (double)(*(pSource + yUpOffset )); // Now we can calculate the lighting intensity. lightIntensity = CalcLightIntensity (nc, nl, nr, nd, nu); lightIntensity *= m_lightBrightness; } else { // These values will apply no lighting to the destination image. lightIntensity = 1.0; } // Get the current background color from the background image. Color backgroundColor (255, 255, 255, 255); if (m_pBackgroundImage != NULL) { backgroundColor = *pBackground; } // Blend the destination color, background color, and the light // intensity together, then update the destination image with that // color. *pDest = CalcDestColor (destColor, backgroundColor, lightIntensity); // Go to the next point. ++pSource; ++pDest; if (m_pBackgroundImage != NULL) { ++pBackground; } } } } ////////////////////////////////////////////////////////////////////////////// // RendererNormalMap class RendererNormalMap::RendererNormalMap (): m_bumpHeight (1.0), m_isWrapEnabled (false), m_pDestImage (NULL), m_pSourceNoiseMap (NULL) { }; Color RendererNormalMap::CalcNormalColor (double nc, double nr, double nu, double bumpHeight) const { // Calculate the surface normal. nc *= bumpHeight; nr *= bumpHeight; nu *= bumpHeight; double ncr = (nc - nr); double ncu = (nc - nu); double d = sqrt ((ncu * ncu) + (ncr * ncr) + 1); double vxc = (nc - nr) / d; double vyc = (nc - nu) / d; double vzc = 1.0 / d; // Map the normal range from the (-1.0 .. +1.0) range to the (0 .. 255) // range. noise::uint8 xc, yc, zc; xc = (noise::uint8)((noise::uint)((floor)((vxc + 1.0) * 127.5)) & 0xff); yc = (noise::uint8)((noise::uint)((floor)((vyc + 1.0) * 127.5)) & 0xff); zc = (noise::uint8)((noise::uint)((floor)((vzc + 1.0) * 127.5)) & 0xff); return Color (xc, yc, zc, 0); } void RendererNormalMap::Render () { if ( m_pSourceNoiseMap == NULL || m_pDestImage == NULL || m_pSourceNoiseMap->GetWidth () <= 0 || m_pSourceNoiseMap->GetHeight () <= 0) { throw noise::ExceptionInvalidParam (); } int width = m_pSourceNoiseMap->GetWidth (); int height = m_pSourceNoiseMap->GetHeight (); for (int y = 0; y < height; y++) { const float* pSource = m_pSourceNoiseMap->GetConstSlabPtr (y); Color* pDest = m_pDestImage->GetSlabPtr (y); for (int x = 0; x < width; x++) { // Calculate the positions of the current point's right and up // neighbors. int xRightOffset, yUpOffset; if (m_isWrapEnabled) { if (x == (int)width - 1) { xRightOffset = -((int)width - 1); } else { xRightOffset = 1; } if (y == (int)height - 1) { yUpOffset = -((int)height - 1); } else { yUpOffset = 1; } } else { if (x == (int)width - 1) { xRightOffset = 0; } else { xRightOffset = 1; } if (y == (int)height - 1) { yUpOffset = 0; } else { yUpOffset = 1; } } yUpOffset *= m_pSourceNoiseMap->GetStride (); // Get the noise value of the current point in the source noise map // and the noise values of its right and up neighbors. double nc = (double)(*pSource); double nr = (double)(*(pSource + xRightOffset)); double nu = (double)(*(pSource + yUpOffset )); // Calculate the normal product. *pDest = CalcNormalColor (nc, nr, nu, m_bumpHeight); // Go to the next point. ++pSource; ++pDest; } } }