#include "stm32.h" #include "interrupt.h" #include "thread.h" #include "time.h" #include "ppmsum.h" #include "i2c.h" #include "itg3200.h" #include "bma150.h" #include "usart.h" #include "xbee.h" #include "gps.h" template inline void saturate(T& var, T absmax) { if(var > absmax) { var = absmax; } else if(var < -absmax) { var = -absmax; } } template inline T limit(T var, T min, T max) { if(var < min) { return min; } else if(var > max) { return max; } else { return var; } } class PID { private: uint16_t Kp, Ki, Kd; int16_t last; int32_t accum; public: PID(uint16_t p, uint16_t i, uint16_t d) : Kp(p), Ki(i), Kd(d), last(0), accum(0) {} int16_t update(int16_t error) { // P int32_t corr_p = Kp * error; // I accum += Ki * error; int32_t corr_i = accum; // D int32_t corr_d = Kd * (error - last); last = error; return (corr_p + corr_i + corr_d) >> 16; } }; I2C i2c; ITG3200 gyro(i2c); BMA150 accel(i2c); volatile uint16_t dmabuf[2]; void threadmain() { ADC1.CR2 = 0x9; while(ADC1.CR2 & 0x8); ADC1.CR2 = 0x5; while(ADC1.CR2 & 0x4); DMA1.CH[0].CMAR = (uint32_t)&dmabuf; DMA1.CH[0].CPAR = (uint32_t)&ADC1.DR; DMA1.CH[0].CNDTR = 2; DMA1.CH[0].CCR = 0x05a1; ADC1.SMPR2 = 0x003f000; ADC1.SQR1 = 0x100000; ADC1.SQR3 = 5 | (4 << 5); ADC1.CR1 = 0x100; ADC1.CR2 = 0x103; ADC1.CR2 = 0x103; while(1) { uint16_t buf[] = { gyro.x, gyro.y, gyro.z, accel.x, accel.y, accel.z, dmabuf[0], dmabuf[1], }; xbee_send(1, sizeof(buf), (uint8_t*)buf); Time::sleep(100); } } uint32_t thstack[1024]; Thread thread(thstack, sizeof(thstack), threadmain); GPS gps; void gps_thread_main() { while(1) { P msg = gps.read(); if(msg->n < 128) { xbee_send(2, msg->n, msg->buf); } } } uint32_t gps_stack[256]; Thread gps_thread(gps_stack, sizeof(gps_stack), gps_thread_main); int main() { // Initialize system timer. Time::init(); RCC.enable(RCC.AFIO); RCC.enable(RCC.IOPA); RCC.enable(RCC.IOPB); GPIOA.CRL = 0x4400bbbb; GPIOA.CRH = 0x444444b4; GPIOB.CRL = 0xff444434; GPIOB.CRH = 0x44444444; GPIOB.ODR = 1 << 1; RCC.enable(RCC.DMA1); RCC.enable(RCC.ADC1); // Give all hardware enough time to initialize. Time::sleep(100); //I2C i2c; i2c.enable(); //ITG3200 gyro(i2c); gyro.init(); accel.init(); PPMSum ppmsum; ppmsum.enable(); RCC.enable(RCC.TIM2); TIM2.PSC = 72; TIM2.ARR = 5000; TIM2.CCER = 0x1111; TIM2.CCMR1 = 0x6868; TIM2.CCMR2 = 0x6868; TIM2.CR1 = 0x05; PID pid_pitch(6000, 0, 0); PID pid_roll(6000, 0, 0); PID pid_yaw(6000, 0, 0); usart_enable(); gps.enable(); thread.start(); //gps_thread.start(); while(1) { // Wait for a new update. while(!(TIM2.SR & 0x01)) { Thread::yield(); } TIM2.SR = 0; // Read sensors. gyro.update(); accel.update(); // Update filter. // Generate motor mix. int16_t throttle = ppmsum.channels[2] - 1000; int16_t pitch = pid_pitch.update((ppmsum.channels[1] - 1500) * 1 - gyro.x); int16_t roll = pid_roll.update((ppmsum.channels[0] - 1500) * 1 - gyro.y); int16_t yaw = pid_yaw.update((ppmsum.channels[3] - 1500) * -1 - gyro.z); int16_t max = throttle > 250 ? 250 : throttle; saturate(pitch, max); saturate(roll, max); saturate(yaw, max); int cmds[] = { 1000 + throttle + pitch - roll + yaw, 1000 + throttle - pitch - roll - yaw, 1000 + throttle - pitch + roll + yaw, 1000 + throttle + pitch + roll - yaw, }; TIM2.CCR1 = limit(cmds[0], 1000, 2000); TIM2.CCR2 = limit(cmds[1], 1000, 2000); TIM2.CCR3 = limit(cmds[2], 1000, 2000); TIM2.CCR4 = limit(cmds[3], 1000, 2000); } }