#include "stm32.h" #include "interrupt.h" #include "thread.h" #include "time.h" #include "ppmsum.h" #include "i2c.h" #include "ahrs.h" #include "telemetry.h" #include "usart.h" #include "xbee.h" #include "gps.h" #include "pin.h" template inline void saturate(T& var, T absmax) { if(var > absmax) { var = absmax; } else if(var < -absmax) { var = -absmax; } } template inline T limit(T var, T min, T max) { if(var < min) { return min; } else if(var > max) { return max; } else { return var; } } class PID { private: uint16_t Kp, Ki, Kd; int16_t last; int32_t accum; public: PID(uint16_t p, uint16_t i, uint16_t d) : Kp(p), Ki(i), Kd(d), last(0), accum(0) {} int16_t update(int16_t error) { // P int32_t corr_p = Kp * error; // I accum += Ki * error; int32_t corr_i = accum; // D int32_t corr_d = Kd * (error - last); last = error; return (corr_p + corr_i + corr_d) >> 16; } }; AHRS ahrs(I2C1); volatile uint16_t motors[4]; //GPS gps; void gps_thread_main() { while(1) { //P msg = gps.read(); //if(msg->n < 128) { // xbee_send(2, msg->n, msg->buf); //} } } uint32_t gps_stack[256]; Thread gps_thread(gps_stack, sizeof(gps_stack), gps_thread_main); static Pin& led_green = PD12; static Pin& led_yellow = PD13; static Pin& led_red = PD14; static Pin& led_blue = PD15; int main() { // Initialize system timer. STK.LOAD = 168000000 / 8 / 1000; // 1000 Hz. STK.CTRL = 0x03; RCC.enable(RCC.GPIOA); RCC.enable(RCC.GPIOB); RCC.enable(RCC.GPIOD); led_green.set_mode(Pin::Output); led_yellow.set_mode(Pin::Output); led_red.set_mode(Pin::Output); led_blue.set_mode(Pin::Output); //RCC.enable(RCC.DMA1); //RCC.enable(RCC.ADC1); PB6.set_af(7); PB7.set_af(7); PB6.set_mode(Pin::Output); PB7.set_mode(Pin::Output); // Give all hardware enough time to initialize. Time::sleep(200); I2C1.enable(PB8, PB9); ahrs.init(); //PPMSum ppmsum; //ppmsum.enable(); //RCC.enable(RCC.TIM2); //TIM2.PSC = 72; //TIM2.ARR = 5000; //TIM2.CCER = 0x1111; //TIM2.CCMR1 = 0x6868; //TIM2.CCMR2 = 0x6868; //TIM2.CR1 = 0x05; //PID pid_pitch(6000, 0, 0); //PID pid_roll(6000, 0, 0); //PID pid_yaw(6000, 0, 0); RCC.enable(RCC.USART1); usart_enable(); //gps.enable(); telemetry_thread.start(); //gps_thread.start(); while(1) { led_green.on(); Time::sleep(100); led_green.off(); led_yellow.on(); Time::sleep(100); led_yellow.off(); led_red.on(); Time::sleep(100); led_red.off(); led_blue.on(); Time::sleep(100); led_blue.off(); // Wait for a new update. //while(!(TIM2.SR & 0x01)) { // Thread::yield(); //} //TIM2.SR = 0; // Update AHRS. ahrs.update(); // Update filter. //int16_t throttle = ppmsum.channels[2] - 1000; //int16_t pitch = pid_pitch.update((ppmsum.channels[1] - 1500) * 1 - ahrs.gyro.x); //int16_t roll = pid_roll.update((ppmsum.channels[0] - 1500) * 1 - ahrs.gyro.y); //int16_t yaw = pid_yaw.update((ppmsum.channels[3] - 1500) * -1 - ahrs.gyro.z); //int16_t max = throttle > 250 ? 250 : throttle; //saturate(pitch, max); //saturate(roll, max); //saturate(yaw, max); // Generate motor mix. //motors[0] = limit(throttle + pitch - roll + yaw, 0, 1000); //motors[1] = limit(throttle - pitch - roll - yaw, 0, 1000); //motors[2] = limit(throttle - pitch + roll + yaw, 0, 1000); //motors[3] = limit(throttle + pitch + roll - yaw, 0, 1000); //TIM2.CCR1 = 1000 + motors[0]; //TIM2.CCR2 = 1000 + motors[1]; //TIM2.CCR3 = 1000 + motors[2]; //TIM2.CCR4 = 1000 + motors[3]; } }