#include "stm32.h" #include "interrupt.h" #include "thread.h" #include "time.h" #include "ppmsum.h" #include "i2c.h" #include "ahrs.h" #include "telemetry.h" #include "usart.h" #include "xbee.h" #include "gps.h" #include "pin.h" template inline void saturate(T& var, T absmax) { if(var > absmax) { var = absmax; } else if(var < -absmax) { var = -absmax; } } template inline T limit(T var, T min, T max) { if(var < min) { return min; } else if(var > max) { return max; } else { return var; } } class PID { private: uint16_t Kp, Ki, Kd; int16_t last; int32_t accum; public: PID(uint16_t p, uint16_t i, uint16_t d) : Kp(p), Ki(i), Kd(d), last(0), accum(0) {} int16_t update(int16_t error) { // P int32_t corr_p = Kp * error; // I accum += Ki * error; int32_t corr_i = accum; // D int32_t corr_d = Kd * (error - last); last = error; return (corr_p + corr_i + corr_d) >> 16; } }; I2C i2c; AHRS ahrs(i2c); volatile uint16_t motors[4]; GPS gps; void gps_thread_main() { while(1) { P msg = gps.read(); if(msg->n < 128) { xbee_send(2, msg->n, msg->buf); } } } uint32_t gps_stack[256]; Thread gps_thread(gps_stack, sizeof(gps_stack), gps_thread_main); static Pin& led_green = PD12; static Pin& led_yellow = PD13; static Pin& led_red = PD14; static Pin& led_blue = PD15; int main() { // Initialize system timer. STK.LOAD = 168000000 / 8 / 1000; // 1000 Hz. STK.CTRL = 0x03; RCC.enable(RCC.GPIOA); RCC.enable(RCC.GPIOB); RCC.enable(RCC.GPIOD); led_green.set_mode(Pin::Output); led_yellow.set_mode(Pin::Output); led_red.set_mode(Pin::Output); led_blue.set_mode(Pin::Output); RCC.enable(RCC.DMA1); RCC.enable(RCC.ADC1); PB6.set_af(7); PB7.set_af(7); PB6.set_mode(Pin::Output); PB7.set_mode(Pin::Output); // Give all hardware enough time to initialize. Time::sleep(200); i2c.enable(); ahrs.init(); PPMSum ppmsum; ppmsum.enable(); RCC.enable(RCC.TIM2); TIM2.PSC = 72; TIM2.ARR = 5000; TIM2.CCER = 0x1111; TIM2.CCMR1 = 0x6868; TIM2.CCMR2 = 0x6868; TIM2.CR1 = 0x05; PID pid_pitch(6000, 0, 0); PID pid_roll(6000, 0, 0); PID pid_yaw(6000, 0, 0); usart_enable(); gps.enable(); telemetry_thread.start(); //gps_thread.start(); while(1) { // Wait for a new update. while(!(TIM2.SR & 0x01)) { Thread::yield(); } TIM2.SR = 0; // Update AHRS. ahrs.update(); // Update filter. int16_t throttle = ppmsum.channels[2] - 1000; int16_t pitch = pid_pitch.update((ppmsum.channels[1] - 1500) * 1 - ahrs.gyro.x); int16_t roll = pid_roll.update((ppmsum.channels[0] - 1500) * 1 - ahrs.gyro.y); int16_t yaw = pid_yaw.update((ppmsum.channels[3] - 1500) * -1 - ahrs.gyro.z); int16_t max = throttle > 250 ? 250 : throttle; saturate(pitch, max); saturate(roll, max); saturate(yaw, max); // Generate motor mix. motors[0] = limit(throttle + pitch - roll + yaw, 0, 1000); motors[1] = limit(throttle - pitch - roll - yaw, 0, 1000); motors[2] = limit(throttle - pitch + roll + yaw, 0, 1000); motors[3] = limit(throttle + pitch + roll - yaw, 0, 1000); TIM2.CCR1 = 1000 + motors[0]; TIM2.CCR2 = 1000 + motors[1]; TIM2.CCR3 = 1000 + motors[2]; TIM2.CCR4 = 1000 + motors[3]; } }