summaryrefslogtreecommitdiff
path: root/main.cpp
blob: 22ff85a4b723d43ad4810e7c545eb2faedb186aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#include "stm32.h"

void entry();

void* vectors[4] __attribute__((section(".vectors"))) = {
	(void*)0x20004ffc,
	(void*)entry
	//(unsigned int *)	STACK_TOP,         // stack pointer
	//(unsigned int *)	main,              // code entry point
	//(unsigned int *)	nmi_handler,       // NMI handler (not really)
	//(unsigned int *)	hardfault_handler  // hard fault handler (let's hope not)
};

volatile unsigned int cnt;

int main() {
	RCC.APB2ENR |= 0x5;
	
	GPIOA.CRL = 0x44344444;
	GPIOA.ODR = 1 << 5;
	
	while(1) {
		cnt++;
	}
}

/*
#include "thread.h"
#include "usbserial.h"
#include "itg3200.h"
#include "bma150.h"
#include "ak8975.h"
#include "ppmsum.h"
#include "motormixer.h"

#include <ch.h>
#include <hal.h>

#include "IMU.h"

class LEDThread : public BaseThread<LEDThread, 128> {
	public:
		noreturn_t thread_main() {
			systime_t time = chTimeNow();     // T0
			while (TRUE) {
				time += MS2ST(1000);            // Next deadline
				palClearPad(GPIOA, 5);
				chThdSleepUntil(time);
				time += MS2ST(1000);            // Next deadline
				palSetPad(GPIOA, 5);
				chThdSleepUntil(time);
			}
		}
};

LEDThread led_thread;

PPMSum ppmsum;
MotorMixer motors;

class USBThread : public BaseThread<USBThread, 256> {
	private:
		typedef enum {W_S, W_N, W_V} w_s_t;
	
	public:
		USBSerial* usbs;
		
		uint8_t data[9];
		
		noreturn_t thread_main() {
			for(int i = 0; i < 9; i++) {
				data[i] = 0;
			}
			
			w_s_t w_s = W_S;
			uint8_t w_n = 0;
			
			while(1) {
				size_t buffer = usbs->getc();
				if(buffer >= 0 && buffer < 256) {
					if(w_s == W_S && buffer == 'S') {
						w_s = W_N;
					} else if(w_s == W_N && buffer >= '1' && buffer <= '9') {
						w_s = W_V;
						w_n = buffer - '1';
					} else if(w_s == W_V) {
						w_s = W_S;
						data[w_n] = buffer;
					} else {
						w_s = W_S;
					}
				}
			}
		}
};

USBThread usb_thread;
USBSerial usbs;

#include "foo.h"
#include <cmath>

uint8_t syncword[] = {0xff, 0x00, 0xaa, 0x55};
uint8_t buf[64];
int16_t* sensordata = (int16_t*)buf;

template<class T>
inline void saturate(T& var, int absmax) {
	if(var > absmax) {
		var = absmax;
	} else if(var < -absmax) {
		var = -absmax;
	}
}

class I2CThread : public BaseThread<I2CThread, 256> {
	public:
		ITG3200 gyro;
		BMA150 acc;
		AK8975 magn;
		
		int16_t x, y, z;
		
		noreturn_t thread_main() {
			I2CSensor::enable_bus();
			
			gyro.init();
			acc.init();
			magn.init();
			
			systime_t time = chTimeNow();
			
			int32_t pitch_angle_accum = 0;
			int32_t roll_angle_accum = 0;
			
			while (1) {
				gyro.update();
				acc.update();
				magn.update();
				x = gyro.x;
				y = gyro.y;
				z = gyro.z;
				
				IMUupdate(gyro.x * 0.0012141420883438813, gyro.y * 0.0012141420883438813, gyro.z * 0.0012141420883438813, acc.x, acc.y, acc.z);
				
				//float pitch = asinf(2*(q0*q2 - q3*q1));
				//int16_t pitch = atan2f(2*(q2*q3 + q0*q1), 1 - 2 * (q1*q1 + q2*q2)) / M_PI * 32767;
				//int16_t roll = atan2f(2*(-q1*q3 + q0*q2), 1 - 2 * (q1*q1 + q2*q2)) / M_PI * 32767;
				//int16_t yaw = atan2f(2*(q2*q1 + q0*q3), 1 - 2 * (q3*q3 + q2*q2)) / M_PI * 32767;
				
				float norm_x = 2*(q0*q2 - q1*q3);
				float norm_y = 2*(q0*q1 + q2*q3);
				float norm_z = (1 - 2*(q1*q1 + q2*q2));
				
				float elev = acosf(norm_z);
				float azim = atan2f(norm_y, norm_x);
				
				int16_t pitch = elev * sinf(azim) / M_PI * 32767;
				int16_t roll = elev * cosf(azim) / M_PI * 32767;
				int16_t yaw = 0;
				
				sensordata[0] = gyro.x;
				sensordata[1] = gyro.y;
				sensordata[2] = gyro.z;
				sensordata[3] = acc.x;
				sensordata[4] = acc.y;
				sensordata[5] = acc.z;
				sensordata[6] = magn.x;
				sensordata[7] = magn.y;
				sensordata[8] = magn.z;
				sensordata[9] = pitch;
				sensordata[10] = roll;
				sensordata[11] = yaw;
				
				usbs.write(syncword, sizeof(syncword));
				usbs.write(buf, sizeof(buf));
				
				/*usbprintf(usbs, "%6d, %6d, %6d | %6d, %6d, %6d | %6d, %6d, %6d | %6d, %6d, %6d, %6d | %6d, %6d, %6d\r\n",
					gyro.x, gyro.y, gyro.z,
					acc.x, acc.y, acc.z,
					magn.x, magn.y, magn.z,
					int(q0 * 10000), int(q1 * 10000), int(q2 * 10000), int(q3 * 10000),
					int(pitch * 10000), int(roll * 10000), int(yaw * 10000));*//*
				
				int16_t pitch_angle_target = (ppmsum.data[1] - 500) * 8;
				int16_t roll_angle_target = (ppmsum.data[0] - 500) * 8;
				
				int16_t pitch_angle_error = pitch_angle_target - pitch;
				int16_t roll_angle_error = roll_angle_target - roll;
				
				// 25 deg max error.
				saturate(pitch_angle_error, 4551);
				saturate(roll_angle_error, 4551);
				
				pitch_angle_accum += pitch_angle_error;
				roll_angle_accum += roll_angle_error;
				
				// 20 deg s max error.
				saturate(pitch_angle_accum, 364088);
				saturate(roll_angle_accum, 364088);
				
				int32_t pitch_rate_target = (pitch_angle_error * 2 * 65536 + pitch_angle_accum * 98) >> 16;
				int32_t roll_rate_target = (roll_angle_error * 2 * 65536 + roll_angle_accum * 98) >> 16;
				
				int16_t pitch_rate_comp = ((pitch_rate_target - (gyro.x * 4000 / 360)) * 6 * 36) >> 16;
				int16_t roll_rate_comp = ((roll_rate_target - (gyro.y * 4000 / 360)) * 6 * 36) >> 16;
				
				saturate(pitch_rate_comp, 250);
				saturate(roll_rate_comp, 250);
				
				motors.update(ppmsum.data[2], pitch_rate_comp, roll_rate_comp, 0);
				
				time += MS2ST(10);
				if(time > chTimeNow()) {
					chThdSleepUntil(time);
				}
			}
		}
};

I2CThread i2c_thread;

static const ADCConversionGroup adcgrpcfg = {
	FALSE,
	2,
	0,
	0,
	0,
	0,
	0,
	ADC_SQR1_NUM_CH(2),
	0,
	ADC_SQR3_SQ2_N(ADC_CHANNEL_IN14) | ADC_SQR3_SQ1_N(ADC_CHANNEL_IN15)
};

class ADCThread : public BaseThread<ADCThread, 128> {
	private:
		adcsample_t adc_samples[2];
		
	public:
		noreturn_t thread_main() {
			adcStart(&ADCD1, NULL);
			
			systime_t time = chTimeNow();
			while (TRUE) {
				adcStartConversion(&ADCD1, &adcgrpcfg, adc_samples, 1);
				sensordata[12] = adc_samples[0] * 1265 / 1000;
				sensordata[13] = adc_samples[1] * 2201 / 1000;
				
				time += MS2ST(1000);
				chThdSleepUntil(time);
			}
		}
};

ADCThread adc_thread;

int main(void) {
	halInit();
	chSysInit();
	
	led_thread.start();
	
	ppmsum.start();
	
	usbs.init();
	
	i2c_thread.start();
	
	adc_thread.start();
	
	motors.start();
	
	usb_thread.usbs = &usbs;
	usb_thread.start();
	
	while (1) {
		chThdSleepMilliseconds(1000);
	}
}
*/