1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
//=====================================================================================================
// IMU.c
// S.O.H. Madgwick
// 25th September 2010
//=====================================================================================================
// Description:
//
// Quaternion implementation of the 'DCM filter' [Mayhony et al].
//
// User must define 'halfT' as the (sample period / 2), and the filter gains 'Kp' and 'Ki'.
//
// Global variables 'q0', 'q1', 'q2', 'q3' are the quaternion elements representing the estimated
// orientation. See my report for an overview of the use of quaternions in this application.
//
// User must call 'IMUupdate()' every sample period and parse calibrated gyroscope ('gx', 'gy', 'gz')
// and accelerometer ('ax', 'ay', 'ay') data. Gyroscope units are radians/second, accelerometer
// units are irrelevant as the vector is normalised.
//
//=====================================================================================================
//----------------------------------------------------------------------------------------------------
// Header files
#include "IMU.h"
#include <math.h>
#include <ch.h>
//----------------------------------------------------------------------------------------------------
// Definitions
#define Kp 2.0f // proportional gain governs rate of convergence to accelerometer/magnetometer
#define Ki 0.005f // integral gain governs rate of convergence of gyroscope biases
#define halfT (0.5f / 100) // half the sample period
//---------------------------------------------------------------------------------------------------
// Variable definitions
float q0 = 1, q1 = 0, q2 = 0, q3 = 0; // quaternion elements representing the estimated orientation
float exInt = 0, eyInt = 0, ezInt = 0; // scaled integral error
//====================================================================================================
// Function
//====================================================================================================
void IMUupdate(float gx, float gy, float gz, float ax, float ay, float az) {
float norm;
float vx, vy, vz;
float ex, ey, ez;
// normalise the measurements
norm = sqrt(ax*ax + ay*ay + az*az);
ax = ax / norm;
ay = ay / norm;
az = az / norm;
// estimated direction of gravity
vx = 2*(q1*q3 - q0*q2);
vy = 2*(q0*q1 + q2*q3);
vz = q0*q0 - q1*q1 - q2*q2 + q3*q3;
// error is sum of cross product between reference direction of field and direction measured by sensor
ex = (ay*vz - az*vy);
ey = (az*vx - ax*vz);
ez = (ax*vy - ay*vx);
// integral error scaled integral gain
exInt = exInt + ex*Ki;
eyInt = eyInt + ey*Ki;
ezInt = ezInt + ez*Ki;
// adjusted gyroscope measurements
gx = gx + Kp*ex + exInt;
gy = gy + Kp*ey + eyInt;
gz = gz + Kp*ez + ezInt;
// integrate quaternion rate and normalise
q0 = q0 + (-q1*gx - q2*gy - q3*gz)*halfT;
q1 = q1 + (q0*gx + q2*gz - q3*gy)*halfT;
q2 = q2 + (q0*gy - q1*gz + q3*gx)*halfT;
q3 = q3 + (q0*gz + q1*gy - q2*gx)*halfT;
// normalise quaternion
norm = sqrt(q0*q0 + q1*q1 + q2*q2 + q3*q3);
q0 = q0 / norm;
q1 = q1 / norm;
q2 = q2 / norm;
q3 = q3 / norm;
}
//====================================================================================================
// END OF CODE
//====================================================================================================
|